Stability of doubly-intractable distributions
Autor: | Habeck, Michael, Rudolf, Daniel, Sprungk, Björn |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Doubly-intractable distributions appear naturally as posterior distributions in Bayesian inference frameworks whenever the likelihood contains a normalizing function $Z$. Having two such functions $Z$ and $\widetilde Z$ we provide estimates of the total variation and Wasserstein distance of the resulting posterior probability measures. As a consequence this leads to local Lipschitz continuity w.r.t. $Z$. In the more general framework of a random function $\widetilde Z$ we derive bounds on the expected total variation and expected Wasserstein distance. The applicability of the estimates is illustrated within the setting of two representative Monte Carlo recovery scenarios. Comment: 16 pages, to appear in Electronic Communications in Probability |
Databáze: | arXiv |
Externí odkaz: |