Differentiability of relative volumes over an arbitrary non-Archimedean field
Autor: | Boucksom, Sébastien, Gubler, Walter, Martin, Florent |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Given an ample line bundle $L$ on a geometrically reduced projective scheme defined over an arbitrary non-Archimedean field, we establish a differentiability property for the relative volume of two continuous metrics on the Berkovich analytification of $L$, extending previously known results in the discretely valued case. As applications, we provide fundamental solutions to certain non-Archimedean Monge--Amp\`ere equations, and generalize an equidistribution result for Fekete points. Our main technical input comes from determinant of cohomology and Deligne pairings. Comment: 17 pages |
Databáze: | arXiv |
Externí odkaz: |