Noether Theorems for Lagrangians involving fractional Laplacians
Autor: | Gaia, Filippo |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this work we derive Noether Theorems for energies of the form \begin{equation*} E(u)=\int_\Omega L\left(x,u(x),(-\Delta)^\frac{1}{4}u(x)\right)dx \end{equation*} for Lagrangians exhibiting invariance under a group of transformations acting either on the target or on the domain of the admissible functions $u$, in terms of fractional gradients and fractional divergences. Here $\Omega$ stays either for an Euclidean space $\mathbb{R}^n$ or for the circle $\mathbb{S}^1$. We then discuss some applications of these results and related techniques to the study of nonlocal geometric equations and to the study of stationary points of the half Dirichlet energy on $\mathbb{S}^1$. In particular we introduce the $\frac{1}{2}$-fractional Hopf differential as a simple tool to characterize stationary point of the half Dirichlet energy in $H^\frac{1}{2}(\mathbb{S}^1,\mathbb{R}^m)$ and study their properties. Finally we show how the invariance properties of the half Dirichlet energy on $\mathbb{R}$ can be used to obtain Pohozaev identities. Comment: 126 pages |
Databáze: | arXiv |
Externí odkaz: |