giotto-tda: A Topological Data Analysis Toolkit for Machine Learning and Data Exploration
Autor: | Tauzin, Guillaume, Lupo, Umberto, Tunstall, Lewis, Pérez, Julian Burella, Caorsi, Matteo, Reise, Wojciech, Medina-Mardones, Anibal, Dassatti, Alberto, Hess, Kathryn |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | NeurIPS 2020 workshop "Topological Data Analysis and beyond" (https://openreview.net/forum?id=fjQtZJOCTXf); JMLR 22 (https://www.jmlr.org/papers/v22/20-325.html) |
Druh dokumentu: | Working Paper |
Popis: | We introduce giotto-tda, a Python library that integrates high-performance topological data analysis with machine learning via a scikit-learn-compatible API and state-of-the-art C++ implementations. The library's ability to handle various types of data is rooted in a wide range of preprocessing techniques, and its strong focus on data exploration and interpretability is aided by an intuitive plotting API. Source code, binaries, examples, and documentation can be found at https://github.com/giotto-ai/giotto-tda. Comment: 7 pages, 2 figures |
Databáze: | arXiv |
Externí odkaz: |