Continuous protection of a collective state from inhomogeneous dephasing
Autor: | Finkelstein, Ran, Lahad, Ohr, Cohen, Itsik, Davidson, Omri, Kiriati, Shai, Poem, Eilon, Firstenberg, Ofer |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Phys. Rev. X 11, 011008 (2021) |
Druh dokumentu: | Working Paper |
DOI: | 10.1103/PhysRevX.11.011008 |
Popis: | We introduce and demonstrate a scheme for eliminating the inhomogeneous dephasing of a collective quantum state. The scheme employs off-resonant fields that continuously dress the collective state with an auxiliary sensor state, which has an enhanced and opposite sensitivity to the same source of inhomogeneity. We derive the optimal conditions under which the dressed state is fully protected from dephasing, when using either one or two dressing fields. The latter provides better protection, circumvents qubit phase rotation, and suppresses the sensitivity to drive noise. We further derive expressions for all residual, higher-order, sensitivities. We experimentally study the scheme by protecting a collective excitation of an atomic ensemble, where inhomogeneous dephasing originates from thermal motion. Using photon storage and retrieval, we demonstrate complete suppression of inhomogeneous dephasing and consequently a prolonged memory time. Our scheme may be applied to eliminate motional dephasing in other systems, improving the performance of quantum gates and memories with neutral atoms. It is also generally applicable to various gas, solid, and engineered systems, where sensitivity to variations in time, space, or other domains limits possible scale-up of the system. Comment: Revision includes extraction of the inhomogeneous dephasing time for various dressing parameters, discusses several extensions to other systems and applications, and clarifies further differences from previous schemes ;15 pages (including Methods and Supplementary information),6 figures, 1 table |
Databáze: | arXiv |
Externí odkaz: |