Autor: |
Cicalese, Marco, Orlando, Gianluca, Ruf, Matthias |
Rok vydání: |
2020 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
We study the asymptotic behavior of the $N$-clock model, a nearest neighbors ferromagnetic spin model on the $d$-dimensional cubic $\varepsilon$-lattice in which the spin field is constrained to take values in a discretization $\mathcal{S}_N$ of the unit circle~$\mathbb{S}^{1}$ consisting of $N$ equispaced points. Our $\Gamma$-convergence analysis consists of two steps: we first fix $N$ and let the lattice spacing $\varepsilon \to 0$, obtaining an interface energy in the continuum defined on piecewise constant spin fields with values in $\mathcal{S}_N$; at a second stage, we let $N \to +\infty$. The final result of this two-step limit process is an anisotropic total variation of $\mathbb{S}^1$-valued vector fields of bounded variation. |
Databáze: |
arXiv |
Externí odkaz: |
|