Foliations of continuous q-pseudoconcave graphs
Autor: | Pawlaschyk, Thomas, Shcherbina, Nikolay |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We show that for $k = 0, 1$ the graph of a continuous mapping $f:D \to \mathbb{R}^k\times\mathbb{C}^p$, defined on a domain $D$ in $\mathbb{C}^n\times\mathbb{R}^k$, is locally foliated by complex $n$-dimensional submanifolds if and only if its complement is $n$-pseudoconvex (in the sense of Rothstein) relatively to $(D\times\mathbb{R}^k)\times\mathbb{C}^p\subset \mathbb{C}^{n}\times\mathbb{C}^k\times\mathbb{C}^p$. Comment: 20 pages. Comments welcome |
Databáze: | arXiv |
Externí odkaz: |