Foliations of continuous q-pseudoconcave graphs

Autor: Pawlaschyk, Thomas, Shcherbina, Nikolay
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
Popis: We show that for $k = 0, 1$ the graph of a continuous mapping $f:D \to \mathbb{R}^k\times\mathbb{C}^p$, defined on a domain $D$ in $\mathbb{C}^n\times\mathbb{R}^k$, is locally foliated by complex $n$-dimensional submanifolds if and only if its complement is $n$-pseudoconvex (in the sense of Rothstein) relatively to $(D\times\mathbb{R}^k)\times\mathbb{C}^p\subset \mathbb{C}^{n}\times\mathbb{C}^k\times\mathbb{C}^p$.
Comment: 20 pages. Comments welcome
Databáze: arXiv