On a supercongruence conjecture of Z.-W. Sun

Autor: Mao, Guo-Shuai
Rok vydání: 2020
Předmět:
Zdroj: Chinese Annals of Mathematics, Series B (2022) 43(3), 2022, 417-424
Druh dokumentu: Working Paper
DOI: 10.1007/s11401-022-0332-7
Popis: In this paper, we partly prove a supercongruence conjectured by Z.-W. Sun in 2013. Let $p$ be an odd prime and let $a\in\mathbb{Z}^{+}$. Then if $p\equiv1\pmod3$, we have \begin{align*} \sum_{k=0}^{\lfloor\frac{5}6p^a\rfloor}\frac{\binom{2k}k}{16^k}\equiv\left(\frac{3}{p^a}\right)\pmod{p^2}, \end{align*} where $\left(\frac{\cdot}{\cdot}\right)$ is the Jacobi symbol.
Comment: 8 pages
Databáze: arXiv