Self-isolation or borders closing: what prevents epidemic spreading better?
Autor: | Valba, O., Avetisov, V., Gorsky, A., Nechaev, S. |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Phys. Rev. E 102, 010401 (2020) |
Druh dokumentu: | Working Paper |
DOI: | 10.1103/PhysRevE.102.010401 |
Popis: | Pandemic distribution of COVID-19 in the world has motivated us to discuss combined effects of network clustering and adaptivity on epidemic spreading. We address the question concerning the choice of optimal mechanism for most effective prohibiting disease propagation in a connected network: adaptive clustering, which mimics self-isolation (SI) in local communities, or sharp instant clustering, which looks like frontiers closing (FC) between cities and countries. SI-networks are "adaptively grown" under condition of maximization of small cliques in the entire network, while FC-networks are "instantly created". Running the standard SIR model on clustered SI- and FC-networks, we demonstrate that the adaptive network clustering prohibits the epidemic spreading better than the instant clustering in the network with similar parameters. We found that SI model has scale-free property for degree distribution $P(k)\sim k^{\eta}$ with small critical exponent $-2<\eta<-1$ and argue that scale-free behavior emerges due to the randomness in the initial degree distributions and is absent for random regular graphs. Comment: 6 pages, 4 figures |
Databáze: | arXiv |
Externí odkaz: |