The Gray tensor product for 2-quasi-categories
Autor: | Maehara, Yuki |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Advances in Mathematics 377 (2021) 107461 |
Druh dokumentu: | Working Paper |
DOI: | 10.1016/j.aim.2020.107461 |
Popis: | We construct an $(\infty,2)$-version of the (lax) Gray tensor product. On the 1-categorical level, this is a binary (or more generally an $n$-ary) functor on the category of $\Theta_2$-sets, and it is shown to be left Quillen with respect to Ara's model structure. Moreover we prove that this tensor product forms part of a "homotopical" (biclosed) monoidal structure, or more precisely a normal lax monoidal structure that is associative up to homotopy. Comment: v3: 63 pages. Minor revision. Published version |
Databáze: | arXiv |
Externí odkaz: |