Noncompact $\mathbf{CP}^N$ as a phase space of superintegrable systems

Autor: Khastyan, Erik, Nersessian, Armen, Shmavonyan, Hovhannes
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1142/S0217751X2150055X
Popis: We propose the description of superintegrable models with dynamical $so(1.2)$ symmetry, and of the generic superintegrable deformations of oscillator and Coulomb systems in terms of higher-dimensional Klein model (the non-compact analog of complex projective space) playing the role of phase space. We present the expressions of the constants of motion of these systems via Killing potentials defining the $su(N.1)$ isometries of the K\"ahler structure.
Comment: 11 pages, misprints corrected
Databáze: arXiv