The $\mathcal{S}$-cone and a primal-dual view on second-order representability
Autor: | Naumann, Helen, Theobald, Thorsten |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | The $\mathcal{S}$-cone provides a common framework for cones of polynomials or exponential sums which establish non-negativity upon the arithmetic-geometric inequality, in particular for sums of non-negative circuit polynomials (SONC) or sums of arithmetic-geometric exponentials (SAGE). In this paper, we study the $\mathcal{S}$-cone and its dual from the viewpoint of second-order representability. Extending results of Averkov and of Wang and Magron on the primal SONC cone, we provide explicit generalized second-order descriptions for rational $\mathcal{S}$-cones and theirs duals. Comment: Minor revision, 19 pages, 4 figures |
Databáze: | arXiv |
Externí odkaz: |