Sharp Liouville Theorems

Autor: Villegas, Salvador
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
Popis: Consider the equation div$(\varphi^2 \nabla \sigma)=0$ in $\mathbb{R}^N,$ where $\varphi>0$. Berestycki, Caffarelli and Nirenberg proved that if there exists $C>0$ such that $\int_{B_R}(\varphi \sigma)^2 \leq CR^2$ for every $R\geq 1$ then $\sigma$ is necessarily constant. In this paper we provide necessary and sufficient conditions on $0<\Psi\in C([1,\infty))$ for which this result remains true if we replace $R^2$ with $\Psi(R)$ in any dimension $N$. In the case of the convexity of $\Psi$ for large $R>1$ and $\Psi'>0$, this condition is equivalent to $\displaystyle{\int_1^\infty\frac{1}{\Psi'}=\infty}$.
Comment: 13 pages
Databáze: arXiv