Weight $q$-multiplicities for representations of the exceptional Lie algebra $\mathfrak{g}_2$
Autor: | Cockerham, Jerrell, González, Melissa Gutiérrez, Harris, Pamela E., Loving, Marissa, Miniño, Amaury V., Rennie, Joseph, Kirby, Gordon Rojas |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Given a simple Lie algebra $\mathfrak{g}$, Kostant's weight $q$-multiplicity formula is an alternating sum over the Weyl group whose terms involve the $q$-analog of Kostant's partition function. For $\xi$ (a weight of $\mathfrak{g}$), the $q$-analog of Kostant's partition function is a polynomial-valued function defined by $\wp_q(\xi)=\sum c_i q^i$ where $c_i$ is the number of ways $\xi$ can be written as a sum of $i$ positive roots of $\mathfrak{g}$. In this way, the evaluation of Kostant's weight $q$-multiplicity formula at $q = 1$ recovers the multiplicity of a weight in a highest weight representation of $\mathfrak{g}$. In this paper, we give closed formulas for computing weight $q$-multiplicities in a highest weight representation of the exceptional Lie algebra $\mathfrak{g}_2$. Comment: 17 pages, 1 figure, tables |
Databáze: | arXiv |
Externí odkaz: |