Tomaszewski's problem on randomly signed sums, revisited

Autor: Boppana, Ravi B., Hendriks, Harrie, van Zuijlen, Martien C. A.
Rok vydání: 2020
Předmět:
Zdroj: Electronic Journal of Combinatorics 28:2, #P2.35, 2021
Druh dokumentu: Working Paper
Popis: Let $v_1$, $v_2$, ..., $v_n$ be real numbers whose squares add up to 1. Consider the $2^n$ signed sums of the form $S = \sum \pm v_i$. Boppana and Holzman (2017) proved that at least 13/32 of these sums satisfy $|S| \le 1$. Here we improve their bound to $0.427685$.
Comment: Now with three authors. 4 pages
Databáze: arXiv