On gluing Alexandrov spaces with lower Ricci curvature bounds
Autor: | Kapovitch, Vitali, Ketterer, Christian, Sturm, Karl-Theodor |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper we prove that in the class of metric measure spaces with Alexandrov curvature bounded from below the Riemannian curvature-dimension condition $RCD(K,N)$ with $K\in \mathbb{R}$ and $N\in [1,\infty)$ is preserved under doubling and gluing constructions. Comment: 24 pages |
Databáze: | arXiv |
Externí odkaz: |