On gluing Alexandrov spaces with lower Ricci curvature bounds

Autor: Kapovitch, Vitali, Ketterer, Christian, Sturm, Karl-Theodor
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
Popis: In this paper we prove that in the class of metric measure spaces with Alexandrov curvature bounded from below the Riemannian curvature-dimension condition $RCD(K,N)$ with $K\in \mathbb{R}$ and $N\in [1,\infty)$ is preserved under doubling and gluing constructions.
Comment: 24 pages
Databáze: arXiv