Existence and uniqueness theorems for pointwise slant immersions in complex space forms
Autor: | Alghanemi, Azeb, Al-houiti, Noura M., Chen, Bang-Yen, Uddin, Siraj |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | An isometric immersion $f: M^{n} \rightarrow \tilde M^{m}$ from an $n$-dimensional Riemannian manifold $M^{n}$ into an almost Hermitian manifold $\tilde M^{m}$ of complex dimension $m$ is called pointwise slant if its Wirtinger angles define a function defined on $M$. In this paper we establish the existence and uniqueness theorems for pointwise slant immersions of Riemannian manifolds $M^{n}$ into a complex space form $\tilde M^{n}(c)$ of constant holomorphic sectional curvature $c$. Comment: 14 pages |
Databáze: | arXiv |
Externí odkaz: |