Utilization Difference Based Partitioned Scheduling of Mixed-Criticality Systems

Autor: Ramanathan, Saravanan, Easwaran, Arvind
Rok vydání: 2020
Předmět:
Zdroj: Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, Lausanne, 2017, pages 238-243
Druh dokumentu: Working Paper
DOI: 10.23919/DATE.2017.7926989
Popis: Mixed-Criticality (MC) systems consolidate multiple functionalities with different criticalities onto a single hardware platform. Such systems improve the overall resource utilization while guaranteeing resources to critical tasks. In this paper, we focus on the problem of partitioned multiprocessor MC scheduling, in particular the problem of designing efficient partitioning strategies. We develop two new partitioning strategies based on the principle of evenly distributing the difference between total high-critical utilization and total low-critical utilization for the critical tasks among all processors. By balancing this difference, we are able to reduce the pessimism in uniprocessor MC schedulability tests that are applied on each processor, thus improving overall schedulability. To evaluate the schedulability performance of the proposed strategies, we compare them against existing partitioned algorithms using extensive experiments. We show that the proposed strategies are effective with both dynamic-priority Earliest Deadline First with Virtual Deadlines (EDF-VD) and fixed-priority Adaptive Mixed-Criticality (AMC) algorithms. Specifically, our results show that the proposed strategies improve schedulability by as much as 28.1% and 36.2% for implicit and constrained-deadline task systems respectively.
Comment: \copyright 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
Databáze: arXiv