Role of intermediate 4$f$ states in tuning the band structure of high entropy oxides

Autor: Sarkar, Abhishek, Eggert, Benedikt, Velasco, Leonardo, Mu, Xiaoke, Lill, Johanna, Ollefs, Katharina, Bhattacharya, Subramshu S., Wende, Heiko, Kruk, Robert, Brand, Richard A., Hahn, Horst
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1063/5.0007944
Popis: High entropy oxides (HEOs) are single phase solid solutions consisting of 5 or more cations in approximately equiatomic proportions. In this study, we show reversible control of optical properties in a rare-earth (RE) based HEO-(Ce$_{0.2}$La$_{0.2}$Pr$_{0.2}$Sm$_{0.2}$Y$_{0.2}$)O$_{2-\delta}$ and subsequently utilize a combination of spectroscopic techniques to derive the features of the electronic band structure underpinning the observed optical phenomena. Heat treatment of the HEO under vacuum atmosphere followed by reheat-treatment in air results in a reversible change of the band gap energy, from 1.9 eV to 2.5 eV. The finding is consistent with the reversible changes in the oxidation state and related $f$-orbital occupancy of Pr. However, no pertinent changes in the phase composition or crystal structure is observed upon the vacuum heat treatment. Further annealing of this HEO under H$_2$ atmosphere, followed by reheat-treatment in air, results in even larger but still reversible change of the band gap energy from 1.9 eV to 3.2 eV. This is accompanied by a disorder-order type crystal structure transition and changes in the O 2$p$-RE 5$d$ hybridization evidenced from X-ray absorption near edge spectra (XANES). The O $K$ and RE ${M_{4,5}}$/$L_{3}$ XANES indicate that the presence of Ce and Pr (in 3+/4+) state leads to the formation of intermediate 4$f$ energy levels between the O 2$p$ and RE 5$d$ gap in HEO. It is concluded that heat treatment under reducing/oxidizing atmospheres affects these intermediate levels, thus, offering the possibility to tune the band gap energy in HEO.
Databáze: arXiv