The Power of Many Samples in Query Complexity

Autor: Bassilakis, Andrew, Drucker, Andrew, Göös, Mika, Hu, Lunjia, Ma, Weiyun, Tan, Li-Yang
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
Popis: The randomized query complexity $R(f)$ of a boolean function $f\colon\{0,1\}^n\to\{0,1\}$ is famously characterized (via Yao's minimax) by the least number of queries needed to distinguish a distribution $D_0$ over $0$-inputs from a distribution $D_1$ over $1$-inputs, maximized over all pairs $(D_0,D_1)$. We ask: Does this task become easier if we allow query access to infinitely many samples from either $D_0$ or $D_1$? We show the answer is no: There exists a hard pair $(D_0,D_1)$ such that distinguishing $D_0^\infty$ from $D_1^\infty$ requires $\Theta(R(f))$ many queries. As an application, we show that for any composed function $f\circ g$ we have $R(f\circ g) \geq \Omega(\mathrm{fbs}(f)R(g))$ where $\mathrm{fbs}$ denotes fractional block sensitivity.
Comment: 16 pages
Databáze: arXiv