Hyperbolicity of Appell Polynomials of Functions in the $\delta$-Laguerre-P\'olya Class
Autor: | Iskander, Jonas, Jain, Vanshika |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We present a method for proving that Jensen polynomials associated with functions in the $\delta$-Laguerre-P\'olya class have all real roots, and demonstrate how it can be used to construct new functions belonging to the Laguerre-P\'olya class. As an application, we confirm a conjecture of Ono, which asserts that the Jensen polynomials associated with the first term of the Hardy-Ramanujan-Rademacher series formula for the partition function are always hyperbolic. |
Databáze: | arXiv |
Externí odkaz: |
načítá se...