Autor: |
Chagas, Jonatas B. C., Blank, Julian, Wagner, Markus, Souza, Marcone J. F., Deb, Kalyanmoy |
Rok vydání: |
2020 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
In this paper, we propose a method to solve a bi-objective variant of the well-studied Traveling Thief Problem (TTP). The TTP is a multi-component problem that combines two classic combinatorial problems: Traveling Salesman Problem (TSP) and Knapsack Problem (KP). We address the BI-TTP, a bi-objective version of the TTP, where the goal is to minimize the overall traveling time and to maximize the profit of the collected items. Our proposed method is based on a biased-random key genetic algorithm with customizations addressing problem-specific characteristics. We incorporate domain knowledge through a combination of near-optimal solutions of each subproblem in the initial population and use a custom repair operator to avoid the evaluation of infeasible solutions. The bi-objective aspect of the problem is addressed through an elite population extracted based on the non-dominated rank and crowding distance. Furthermore, we provide a comprehensive study showing the influence of each parameter on the performance. Finally, we discuss the results of the BI-TTP competitions at EMO-2019 and GECCO-2019 conferences where our method has won first and second places, respectively, thus proving its ability to find high-quality solutions consistently. |
Databáze: |
arXiv |
Externí odkaz: |
|