Distinct solutions to generated Jacobian equations cannot intersect

Autor: Rankin, Cale
Rok vydání: 2020
Předmět:
Zdroj: Bull. Aust. Math. Soc. 102 (2020) 462-470
Druh dokumentu: Working Paper
DOI: 10.1017/S0004972720000052
Popis: We prove that if two $C^{1,1}(\Omega)$ solutions of the second boundary value problem for the generated Jacobian equation intersect in $\Omega$ then they are the same solution. In addition we extend this result to $C^{2}(\overline{\Omega})$ solutions intersecting on the boundary, via an additional convexity condition on the target domain.
Comment: Submitted Bulletin of the Australian Mathematical Society November 2019. Accepted December 2019
Databáze: arXiv