Distinct solutions to generated Jacobian equations cannot intersect
Autor: | Rankin, Cale |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Bull. Aust. Math. Soc. 102 (2020) 462-470 |
Druh dokumentu: | Working Paper |
DOI: | 10.1017/S0004972720000052 |
Popis: | We prove that if two $C^{1,1}(\Omega)$ solutions of the second boundary value problem for the generated Jacobian equation intersect in $\Omega$ then they are the same solution. In addition we extend this result to $C^{2}(\overline{\Omega})$ solutions intersecting on the boundary, via an additional convexity condition on the target domain. Comment: Submitted Bulletin of the Australian Mathematical Society November 2019. Accepted December 2019 |
Databáze: | arXiv |
Externí odkaz: |