A gradient descent perspective on Sinkhorn

Autor: Léger, Flavien
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
Popis: We present a new perspective on the popular Sinkhorn algorithm, showing that it can be seen as a Bregman gradient descent (mirror descent) of a relative entropy (Kullback-Leibler divergence). This viewpoint implies a new sublinear convergence rate with a robust constant.
Databáze: arXiv