Naive-commutative structure on rational equivariant $K$-theory for abelian groups
Autor: | Bohmann, Anna Marie, Hazel, Christy, Ishak, Jocelyne, Kędziorek, Magdalena, May, Clover |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Topology Appl. 316 (2022), Paper No. 108100, 18 pp |
Druh dokumentu: | Working Paper |
DOI: | 10.1016/j.topol.2022.108100 |
Popis: | In this paper, we calculate the image of the connective and periodic rational equivariant complex $K$-theory spectrum in the algebraic model for naive-commutative ring $G$-spectra given by Barnes, Greenlees and K\k{e}dziorek for finite abelian $G$. Our calculations show that these spectra are unique as naive-commutative ring spectra in the sense that they are determined up to weak equivalence by their homotopy groups. We further deduce a structure theorem for module spectra over rational equivariant complex $K$-theory. Comment: 19 pages |
Databáze: | arXiv |
Externí odkaz: |