Naive-commutative structure on rational equivariant $K$-theory for abelian groups

Autor: Bohmann, Anna Marie, Hazel, Christy, Ishak, Jocelyne, Kędziorek, Magdalena, May, Clover
Rok vydání: 2020
Předmět:
Zdroj: Topology Appl. 316 (2022), Paper No. 108100, 18 pp
Druh dokumentu: Working Paper
DOI: 10.1016/j.topol.2022.108100
Popis: In this paper, we calculate the image of the connective and periodic rational equivariant complex $K$-theory spectrum in the algebraic model for naive-commutative ring $G$-spectra given by Barnes, Greenlees and K\k{e}dziorek for finite abelian $G$. Our calculations show that these spectra are unique as naive-commutative ring spectra in the sense that they are determined up to weak equivalence by their homotopy groups. We further deduce a structure theorem for module spectra over rational equivariant complex $K$-theory.
Comment: 19 pages
Databáze: arXiv