Mean Value of the Quantum Potential and Uncertainty Relations
Autor: | Nicacio, F., Falciano, F. T. |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Phys. Rev. A 101, 052105 (2020) |
Druh dokumentu: | Working Paper |
DOI: | 10.1103/PhysRevA.101.052105 |
Popis: | In this work we determine a lower bound to the mean value of the quantum potential for an arbitrary state. Furthermore, we derive a generalized uncertainty relation that is stronger than the Robertson-Schr\"odinger inequality and hence also stronger than the Heisenberg uncertainty principle. The mean value is then associated to the nonclassical part of the covariances of the momenta operator. This imposes a minimum bound for the nonclassical correlations of momenta and gives a physical characterization of the classical and semiclassical limits of quantum systems. The results obtained primarily for pure states are then generalized for density matrices describing mixed states. Comment: 15 pages, 2 figures |
Databáze: | arXiv |
Externí odkaz: |