Autor: |
Demir, Sakin |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
International J. Functional Analysis, Operator Theory and Applications, Vol. 14, 2022, pp. 13-17 |
Druh dokumentu: |
Working Paper |
Popis: |
Let $T$ be an operator and suppose that there exists a positive constant $C$ such that $$\left(\int_I|Tf(x)|^q\, dx\right)^{1/q}\leq C\left(\int_I|f(x)|^q\, dx\right)^{1/q}$$ for every $q$ which is near enough to $1$ and for every interval $I$ in $\mathbb{R}$ and $f\in L^{\infty}(\mathbb{R})$. Then we show that $T$ maps $uL^{\infty}$ to ${\rm{BMO}}_u$. |
Databáze: |
arXiv |
Externí odkaz: |
|