Generalizing Tran's Conjecture

Autor: Bögvad, Rikard, Ndikubwayo, Innocent, Shapiro, Boris
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
Popis: A conjecture of Khang Tran [6] claims that for an arbitrary pair of polynomials $A(z)$ and $B(z)$, every zero of every polynomial in the sequence $\{P_n(z)\}_{n=1}^\infty$ satisfying the three-term recurrence relation of length $k$ $$P_n(z)+B(z)P_{n-1}(z)+A(z)P_{n-k}(z)=0 $$ with the standard initial conditions $P_0(z)=1$, $P_{-1}(z)=\dots=P_{-k+1}(z)=0$ which is not a zero of $A(z)$ lies on the real (semi)-algebraic curve $\mathcal C \subset \mathbb {C}$ given by $$\Im \left(\frac{B^k(z)}{A(z)}\right)=0\quad {\rm and}\quad 0\le (-1)^k\Re \left(\frac{B^k(z)}{A(z)}\right)\le \frac{k^k}{(k-1)^{k-1}}.$$ In this short note, we show that for the recurrence relation (generalizing the latter recurrence of Tran) given by $$P_n(z)+B(z)P_{n-\ell}(z)+A(z)P_{n-k}(z)=0, $$ with coprime $k$ and $\ell$ and the same standard initial conditions as above, every root of $P_n(z)$ which is not a zero of $A(z)B(z)$ belongs to the real algebraic curve $\mathcal C_{\ell,k}$ given by $$\Im \left(\frac{B^k(z)}{A^\ell(z)}\right)=0.$$
Comment: 7 pages, 1 figure
Databáze: arXiv