Regularity for a class of quasilinear degenerate parabolic equations in the Heisenberg group

Autor: Capogna, Luca, Citti, Giovanna, Garofalo, Nicola
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
Popis: We extend to the parabolic setting some of the ideas originated with Xiao Zhong's proof in \cite{Zhong} of the H\"older regularity of $p-$harmonic functions in the Heisenberg group $\Hn$. Given a number $p\ge 2$, in this paper we establish the $C^{\infty}$ smoothness of weak solutions of quasilinear pde's in $\Hn$ modelled on the equation $$\p_t u= \sum_{i=1}^{2n} X_i \bigg((1+|\nabla_0 u|^2)^{\frac{p-2}{2}} X_i u\bigg).$$
Databáze: arXiv