How many simplices are needed to triangulate a Grassmannian?
Autor: | Govc, Dejan, Marzantowicz, Wacław, Pavešić, Petar |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We compute a lower bound for the number of simplices that are needed to triangulate the Grassmann manifold $G_k(\mathbb{R}^n)$. In particular, we show that the number of top-dimensional simplices grows exponentially with $n$. More precise estimates are given for $k=2,3,4$. Our method can be used to estimate the minimal size of triangulations for other spaces, like Lie groups, flag manifolds, Stiefel manifolds etc. |
Databáze: | arXiv |
Externí odkaz: |