Steenrod square for virtual links toward Khovanov-Lipshitz-Sarkar stable homotopy type for virtual links

Autor: Kauffman, Louis H., Ogasa, Eiji
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
Popis: We define a second Steenrod square for virtual links, which is stronger than Khovanov homology for virtual links, toward constructing Khovanov-Lipshitz-Sarkar stable homotopy type for virtual links. This induces the first meaningful nontrivial example of the second Steenrod square operator on the Khovanov homology for links in a 3-manifold other than the 3-sphere.
Comment: 83 pages, many figures
Databáze: arXiv