Decidability via the tilting correspondence

Autor: Kartas, Konstantinos
Rok vydání: 2020
Předmět:
Zdroj: Algebra & Number Theory, Volume 18 2024 No. 2
Druh dokumentu: Working Paper
DOI: 10.2140/ant.2024.18.209
Popis: We prove a relative decidability result for perfectoid fields. This applies to show that the fields $\mathbb{Q}_p(p^{1/p^{\infty}})$ and $\mathbb{Q}_p(\zeta_{p^{\infty}})$ are (existentially) decidable relative to the perfect hull of $ \mathbb{F}_p(\!(t)\!)$ and $\mathbb{Q}_p^{ab}$ is (existentially) decidable relative to the perfect hull of $\overline{ \mathbb{F}}_p(\!(t)\!)$. We also prove some unconditional decidability results in mixed characteristic via reduction to characteristic $p$.
Comment: Final version. Local improvements following suggestions from a study group that took place at Fields Institute in Fall 2021 and two referee reports
Databáze: arXiv