The existence of a transverse universal knot
Autor: | Rodríguez-Viorato, Jesús |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Algebr. Geom. Topol. 22 (2022) 2187-2237 |
Druh dokumentu: | Working Paper |
DOI: | 10.2140/agt.2022.22.2187 |
Popis: | We prove that there is a knot $K$ transverse to $\xi_{std}$, the tight contact structure of $S^3$, such that every contact 3-manifold $(M, \xi)$ can be obtained as a contact covering branched along $K$. By contact covering we mean a map $\varphi: M \to S^3$ branched along $K$ such that $\xi$ is contact isotopic to the lifting of $\xi_{std}$ under $\varphi$. Comment: 36 pages, 22 figures To appear on Algebraic and Geometric Topology |
Databáze: | arXiv |
Externí odkaz: |