The existence of a transverse universal knot

Autor: Rodríguez-Viorato, Jesús
Rok vydání: 2020
Předmět:
Zdroj: Algebr. Geom. Topol. 22 (2022) 2187-2237
Druh dokumentu: Working Paper
DOI: 10.2140/agt.2022.22.2187
Popis: We prove that there is a knot $K$ transverse to $\xi_{std}$, the tight contact structure of $S^3$, such that every contact 3-manifold $(M, \xi)$ can be obtained as a contact covering branched along $K$. By contact covering we mean a map $\varphi: M \to S^3$ branched along $K$ such that $\xi$ is contact isotopic to the lifting of $\xi_{std}$ under $\varphi$.
Comment: 36 pages, 22 figures To appear on Algebraic and Geometric Topology
Databáze: arXiv