Autor: |
Muhammed, Madathumpady Abubaker Habeeb, Lamers, Marlene, Baumann, Verena, Dey, Priyanka, Blanch, Adam J., Polishchuk, Iryna, Kong, Xiang-Tian, Levy, Davide, Urban, Alexander, Govorov, Alexander O., Pokroy, Boaz, Rodriguez-Fernandez, Jessica, Feldmann, Jochen |
Rok vydání: |
2019 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
DOI: |
10.1021/acs.jpcc.8b01567 |
Popis: |
Elucidating the underlying principles behind band gap engineering is paramount for the successful implementation of semiconductors in photonic and optoelectronic devices. Recently it has been shown that the band gap of a wide and direct band gap semiconductor, such as ZnO, can be modified upon co-crystallization with amino acids, with the role of the biomolecules remaining unclear. Here, by probing and modeling the light emitting properties of ZnO-amino acid co-crystals, we identify the amino acids role on this band gap modulation and demonstrate their effective chirality transfer to the inter-band excitations in ZnO. Our 3D quantum model suggests that the strong band edge emission blue shift in the co-crystals can be explained by a quasi-periodic distribution of amino acid potential barriers within the ZnO crystal lattice. Overall, our findings indicate that biomolecule co-crystallization can be used as a truly bio-inspired means to induce chiral quantum confinement effects in quasi-bulk semiconductors. |
Databáze: |
arXiv |
Externí odkaz: |
|