Cyclic reduction densities for elliptic curves
Autor: | Campagna, Francesco, Stevenhagen, Peter |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | For an elliptic curve $E$ defined over a number field $K$, the heuristic density of the set of primes of $K$ for which $E$ has cyclic reduction is given by an inclusion-exclusion sum $\delta_{E/K}$ involving the degrees of the $m$-division fields $K_m$ of $E$ over $K$. This density can be proved to be correct under assumption of GRH. For $E$ without complex multiplication (CM), we show that $\delta_{E/K}$ is the product of an explicit non-negative rational number reflecting the finite entanglement of the division fields of $E$ and a universal infinite Artin-type product. For $E$ admitting CM over $K$ by a quadratic order ${\mathcal{O}}$, we show that $\delta_{E/K}$ admits a similar `factorization' in which the Artin type product also depends on ${\mathcal{O}}$. For $E$ admitting CM over $\bar K$ by an order ${\mathcal{O}}\not\subset K$, which occurs for $K={\bf Q}$, the entanglement of division fields over $K$ is non-finite. In this case we write $\delta_{E/K}$ as the sum of two contributions coming from the primes of $K$ that are split and inert in ${\mathcal{O}}$. The split contribution can be dealt with by the previous methods, the inert contribution is of a different nature. We determine the ways in which the density can vanish, and provide numerical examples of the different kinds of densities. Comment: 21 pages; this paper extends the earlier ArXiv preprint 2001.00028 by including the case of CM-curves |
Databáze: | arXiv |
Externí odkaz: |