Congruences for critical values of higher derivatives of twisted Hasse-Weil L-functions, III

Autor: Bley, Werner, Castillo, Daniel Macias
Rok vydání: 2019
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1017/S0305004121000657
Popis: Let $A$ be an abelian variety defined over a number field $k$, let $p$ be an odd prime number and let $F/k$ be a cyclic extension of $p$-power degree. Under not-too-stringent hypotheses we give an interpretation of the $p$-component of the relevant case of the equivariant Tamagawa number conjecture in terms of integral congruence relations involving the evaluation on appropriate points of $A$ of the ${\rm Gal}(F/k)$-valued height pairing of Mazur and Tate. We then discuss the numerical computation of this pairing, and in particular obtain the first numerical verifications of this conjecture in situations in which the $p$-completion of the Mordell-Weil group of $A$ over $F$ is not a projective Galois module.
Comment: Final version, 26 pages. To appear in Math. Proc. Camb. Phil. Soc
Databáze: arXiv