An $\tilde{O}(\log^2 n)$-approximation algorithm for $2$-edge-connected dominating set
Autor: | Belgi, Amir, Nutov, Zeev |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In the Connected Dominating Set problem we are given a graph $G=(V,E)$ and seek a minimum size dominating set $S \subseteq V$ such that the subgraph $G[S]$ of $G$ induced by $S$ is connected. In the $2$-Edge-Connected Dominating Set problem $G[S]$ should be $2$-edge-connected. We give the first non-trivial approximation algorithm for this problem, with expected approximation ratio $\tilde{O}(\log^2n)$. |
Databáze: | arXiv |
Externí odkaz: |