Hankel Bilinear forms on generalized Fock-Sobolev spaces on ${\mathbb C}^n$
Autor: | Cascante, Carme, Fàbrega, Joan, Pascuas, Daniel |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We characterize the boundedness of Hankel bilinear forms on a product of generalized Fock-Sobolev spaces on ${\mathbb C}^n$ with respect to the weight $(1+|z|)^\rho e^{-\frac{\alpha}2|z|^{2\ell}}$, for $\ell\ge 1$, $\alpha>0$ and $\rho\in{\mathbb R}$. We obtain a weak decomposition of the Bergman kernel with estimates and a Littlewood-Paley formula, which are key ingredients in the proof of our main results. As an application, we characterize the boundedness, compactness and the membership in the Schatten class of small Hankel operators on these spaces. Comment: Accepted for publication in Annales Academiae Scientiarum Fennicae Mathematica |
Databáze: | arXiv |
Externí odkaz: |