Autor: |
Enache, Cristian, López, Rafael |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Nonlinear Analysis, volume 187, October 2019, Pages 352-364 |
Druh dokumentu: |
Working Paper |
Popis: |
In this paper we are dealing with two classes of mean curvature type problems that generalize the translating soliton problem. A first result proves that the solutions to these problems have unique interior critical points. Using this uniqueness result, we next derive a priori $C^0$ and $C^1$ estimates for the solutions to these problems, by means of some minimum principles for appropriate $P$-functions, in the sense of L.E. Payne. |
Databáze: |
arXiv |
Externí odkaz: |
|