Minimum principles and a priori estimates for some translating soliton type problems

Autor: Enache, Cristian, López, Rafael
Rok vydání: 2019
Předmět:
Zdroj: Nonlinear Analysis, volume 187, October 2019, Pages 352-364
Druh dokumentu: Working Paper
Popis: In this paper we are dealing with two classes of mean curvature type problems that generalize the translating soliton problem. A first result proves that the solutions to these problems have unique interior critical points. Using this uniqueness result, we next derive a priori $C^0$ and $C^1$ estimates for the solutions to these problems, by means of some minimum principles for appropriate $P$-functions, in the sense of L.E. Payne.
Databáze: arXiv