Homotopy coherent theorems of Dold-Kan type
Autor: | Walde, Tashi |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Adv. Math. 398 (2022), 108175 |
Druh dokumentu: | Working Paper |
DOI: | 10.1016/j.aim.2021.108175 |
Popis: | We establish a large class of homotopy coherent Morita-equivalences of Dold-Kan type relating diagrams with values in any weakly idempotent complete additive $\infty$-category; the guiding example is an $\infty$-categorical Dold-Kan correspondence between the $\infty$-categories of simplicial objects and connective coherent chain complexes. Our results generalize many known 1-categorical equivalences such as the classical Dold-Kan correspondence, Pirashvili's Dold-Kan type theorem for abelian $\Gamma$-groups and, more generally, the combinatorial categorical equivalences of Lack and Street. Comment: 31 pages |
Databáze: | arXiv |
Externí odkaz: |