Homotopy coherent theorems of Dold-Kan type

Autor: Walde, Tashi
Rok vydání: 2019
Předmět:
Zdroj: Adv. Math. 398 (2022), 108175
Druh dokumentu: Working Paper
DOI: 10.1016/j.aim.2021.108175
Popis: We establish a large class of homotopy coherent Morita-equivalences of Dold-Kan type relating diagrams with values in any weakly idempotent complete additive $\infty$-category; the guiding example is an $\infty$-categorical Dold-Kan correspondence between the $\infty$-categories of simplicial objects and connective coherent chain complexes. Our results generalize many known 1-categorical equivalences such as the classical Dold-Kan correspondence, Pirashvili's Dold-Kan type theorem for abelian $\Gamma$-groups and, more generally, the combinatorial categorical equivalences of Lack and Street.
Comment: 31 pages
Databáze: arXiv