Matrix range characterizations of operator system properties

Autor: Passer, Benjamin, Paulsen, Vern I.
Rok vydání: 2019
Předmět:
Zdroj: J. Operator Theory 85:2 (2021), 547-568
Druh dokumentu: Working Paper
DOI: 10.7900/jot.2019dec16.2278
Popis: For finite-dimensional operator systems $\mathcal{S}_{\mathsf T}$, ${\mathsf T} \in B({\mathcal H})^d$, we show that the local lifting property and $1$-exactness of $\mathcal{S}_{\mathsf T}$ may be characterized by measurements of the disparity between the matrix range $\mathcal{W}({\mathsf T})$ and the minimal/maximal matrix convex sets over its individual levels. We then examine these concepts from the point of view of free spectrahedra, direct sums of operator systems, and products of matrix convex sets.
Comment: 20 pages. Version 2 has minor edits and a few more references. To appear in Journal of Operator Theory
Databáze: arXiv