Matrix range characterizations of operator system properties
Autor: | Passer, Benjamin, Paulsen, Vern I. |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | J. Operator Theory 85:2 (2021), 547-568 |
Druh dokumentu: | Working Paper |
DOI: | 10.7900/jot.2019dec16.2278 |
Popis: | For finite-dimensional operator systems $\mathcal{S}_{\mathsf T}$, ${\mathsf T} \in B({\mathcal H})^d$, we show that the local lifting property and $1$-exactness of $\mathcal{S}_{\mathsf T}$ may be characterized by measurements of the disparity between the matrix range $\mathcal{W}({\mathsf T})$ and the minimal/maximal matrix convex sets over its individual levels. We then examine these concepts from the point of view of free spectrahedra, direct sums of operator systems, and products of matrix convex sets. Comment: 20 pages. Version 2 has minor edits and a few more references. To appear in Journal of Operator Theory |
Databáze: | arXiv |
Externí odkaz: |