Sharp embeddings of uniformly localized Bessel potential spaces into multiplier spaces
Autor: | Belyaev, Alexei A., Shkalikov, Andrei A. |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | For $p > 1, \gamma \in \mathbb{R}$, denote by $H^{\gamma}_p(\mathbb{R}^n)$ the Bessel potential space, by $H^{\gamma}_{p, unif}(\mathbb{R}^n)$ the corresponding uniformly localized Bessel potential space and by $M[s, -t]$ the space of multipliers from $H^s_2(\mathbb{R}^n)$ into $H^{-t}_2(\mathbb{R}^n)$. Assume that $s, t \geqslant 0, n/2 > \max(s, t) > 0, r: = \min(s, t), p_1: = n/max(s, t)$. Then the following embeddings hold $$ H^{-r}_{p_1, unif}(\mathbb{R}^n) \subset M[s, -t] \subset H^{-r}_{2, unif}(\mathbb{R}^n). $$ The main result of the paper claims the sharpness of the left embedding in the following sense: it does not hold if the lower index $p_1$ is replaced by $p_1 -\varepsilon$ with any sufficiently small $\varepsilon > 0$. Comment: 21 pages |
Databáze: | arXiv |
Externí odkaz: |