Conley-Morse-Forman theory for generalized combinatorial multivector fields on finite topological spaces
Autor: | Lipiński, Michał, Kubica, Jacek, Mrozek, Marian, Wanner, Thomas |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s41468-022-00102-9 |
Popis: | We generalize and extend the Conley-Morse-Forman theory for combinatorial multivector fields introduced in \cite{Mr2017}. The generalization consists in dropping the restrictive assumption in \cite{Mr2017} that every multivector has a unique maximal element. The extension is from the setting of Lefschetz complexes to the more general situation of finite topological spaces. We define isolated invariant sets, isolating neighbourhoods, Conley index and Morse decompositions. We also establish the additivity property of the Conley index and the Morse inequalities. Comment: Extended version |
Databáze: | arXiv |
Externí odkaz: |