Long nonnegative sums of Legendre symbols
Autor: | Kalmynin, Alexander |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | For $0\leq \alpha<1$ and prime number $p$ let $L(\alpha,p)$ be the sum of the first $[\alpha p]$ values of Legendre symbol modulo $p$. We study positivity of $L(\alpha,p)$ and prove that for $|\alpha-\frac13|<2\cdot 10^{-6}$ and for rational $\alpha\leq \frac12$ with denominators in the set $\{1,2,3,4,5,6,8,12\}$ the inequality $L(\alpha,p)\geq 0$ holds for majority of primes. Comment: Typos corrected |
Databáze: | arXiv |
Externí odkaz: |