Regularity for the planar optimal p-compliance problem
Autor: | Bulanyi, Bohdan, Lemenant, Antoine |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper we prove a partial $C^{1,\alpha}$ regularity result in dimension $N=2$ for the optimal $p$-compliance problem, extending for $p\not = 2$ some of the results obtained by A. Chambolle, J. Lamboley, A. Lemenant, E. Stepanov (2017). Because of the lack of good monotonicity estimates for the $p$-energy when $p\not = 2$, we employ an alternative technique based on a compactness argument leading to a $p$-energy decay at any flat point. We finally obtain that every optimal set has no loop, is Ahlfors regular, and $C^{1,\alpha}$ at $\mathcal{H}^1$-a.e. point for every $p \in (1 ,+\infty)$. Comment: 56 pages |
Databáze: | arXiv |
Externí odkaz: |
načítá se...