Local boundedness for weak solutions to some quasilinear elliptic systems

Autor: Leonardi, Salvatore, Leonetti, Francesco, Pignotti, Cristina, Rocha, Eugenio, Staicu, Vasile
Rok vydání: 2019
Předmět:
Druh dokumentu: Working Paper
Popis: We consider quasilinear elliptic systems in divergence form. In general, we cannot expect that weak solutions are locally bounded because of De Giorgi's counterexample. Here we assume a condition on the support of off-diagonal coefficients that "keeps away" the counterexample and allows us to prove local boundedness of weak solutions.
Databáze: arXiv