Stable equilibria for the roots of the symmetric continuous Hahn and Wilson polynomials
Autor: | van Diejen, J. F. |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/978-3-030-56190-1_6 |
Popis: | We show that the gradient flows associated with a recently found family of Morse functions converge exponentially to the roots of the symmetric continuous Hahn polynomials. By symmetry reduction the rate of the exponential convergence can be improved, which is clarified by comparing with corresponding gradient flows for the roots of the Wilson polynomials. Comment: 20 pages, 6 figures, LaTeX2e |
Databáze: | arXiv |
Externí odkaz: |