Inertial Manifolds and Limit Cycles of Dynamical Systems in $\mathbb R^n$

Autor: Kondratieva, L. A., Romanov, A. V.
Rok vydání: 2019
Předmět:
Druh dokumentu: Working Paper
Popis: We show that the presence of a two-dimensional inertial manifold for an ordinary differential equation in ${\mathbb R}^{n}$ permits reducing the problem of determining asymptotically orbitally stable limit cycles to the Poincare--Bendixson theory. In the case $n=3$ we implement such a scenario for a model of a satellite rotation around a celestial body of small mass and for a biochemical model.
Databáze: arXiv