Ar{\i}kan meets Shannon: Polar codes with near-optimal convergence to channel capacity

Autor: Guruswami, Venkatesan, Riazanov, Andrii, Ye, Min
Rok vydání: 2019
Předmět:
Druh dokumentu: Working Paper
Popis: Let $W$ be a binary-input memoryless symmetric (BMS) channel with Shannon capacity $I(W)$ and fix any $\alpha > 0$. We construct, for any sufficiently small $\delta > 0$, binary linear codes of block length $O(1/\delta^{2+\alpha})$ and rate $I(W)-\delta$ that enable reliable communication on $W$ with quasi-linear time encoding and decoding. Shannon's noisy coding theorem established the \emph{existence} of such codes (without efficient constructions or decoding) with block length $O(1/\delta^2)$. This quadratic dependence on the gap $\delta$ to capacity is known to be best possible. Our result thus yields a constructive version of Shannon's theorem with near-optimal convergence to capacity as a function of the block length. This resolves a central theoretical challenge associated with the attainment of Shannon capacity. Previously such a result was only known for the erasure channel. Our codes are a variant of Ar{\i}kan's polar codes based on multiple carefully constructed local kernels, one for each intermediate channel that arises in the decoding. A crucial ingredient in the analysis is a strong converse of the noisy coding theorem when communicating using random linear codes on arbitrary BMS channels. Our converse theorem shows extreme unpredictability of even a single message bit for random coding at rates slightly above capacity.
Databáze: arXiv