Cotilting sheaves over weighted noncommutative regular projective curves
Autor: | Kussin, Dirk, Laking, Rosanna |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Doc. Math. 25 (2020), 1029-1077 |
Druh dokumentu: | Working Paper |
Popis: | We consider the category $\operatorname{Qcoh}\mathbb{X}$ of quasicoherent sheaves where $\mathbb{X}$ is a weighted noncommutative regular projective curve over a field $k$. This category is a hereditary, locally noetherian Grothendieck category. We classify all indecomposable pure-injective sheaves and all cotilting sheaves of slope $\infty$. In the cases of nonnegative orbifold Euler characteristic this leads to a classification of pure-injective indecomposable sheaves and a description of all large cotilting sheaves in $\operatorname{Qcoh}\mathbb{X}$. Comment: 28 pages, 1 figure. v2: Some typos and formulations fixed, abstract slightly changed, extended number 6.12, additional references, more streamlined recapitulation of the geometric setting |
Databáze: | arXiv |
Externí odkaz: |